Effect of oxygen on cyclic GMP-dependent protein kinase-mediated relaxation in ovine fetal pulmonary arteries and veins.

نویسندگان

  • Yuansheng Gao
  • Srinivas Dhanakoti
  • Earleen M Trevino
  • Fred C Sander
  • Ada M Portugal
  • J Usha Raj
چکیده

Cyclic GMP-dependent protein kinase (PKG) plays an important role in regulating pulmonary vasomotor tone in the perinatal period. In this study, we tested the hypothesis that a change in oxygen tension affects PKG-mediated pulmonary vasodilation. Isolated intrapulmonary arteries and veins of near-term fetal lambs were first incubated for 4 h under hypoxic and normoxic conditions (Po2 of 30 and 140 mmHg, respectively) and then contracted with endothelin-1. 8-Bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP), a cell membrane-permeable analog of cGMP, induced a greater relaxation in vessels incubated in normoxia than in hypoxia. beta-Phenyl-1,N2-etheno-8-bromoguanosine-3',5'-cyclic monophosphorothioate, Rp isomer (Rp-8-Br-PET-cGMPS), a selective inhibitor of PKG, attenuated relaxation induced by 8-BrcGMP (10-4 and 3 x 10-4 M). In the presence of Rp-8-Br-PET-cGMPS, the differential responses to 8-BrcGMP between hypoxia and normoxia treatment were abolished in veins but not in arteries. cGMP-stimulated PKG activity was present in arteries but not in veins after 4 h of hypoxia. Both vessel types showed significant increase in cGMP-stimulated PKG activity after 4 h of normoxia. PKG protein (Western blot analysis) and PKG mRNA levels (quantitative RT-PCR) were greater in veins but not in arteries after 4-h exposure to normoxia vs. hypoxia. These results demonstrate that oxygen augments cGMP-mediated vasodilation of fetal pulmonary arteries and veins. Furthermore, the effect of oxygen on response of the veins to cGMP is due to an increase in the activity, protein level, and mRNA of PKG.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of cGMP-dependent protein kinase-mediated vasodilation by hypoxia-induced reactive species in ovine fetal pulmonary veins.

We previously reported that hypoxia attenuates cGMP-dependent protein kinase (PKG)-mediated relaxation in pulmonary vessels (Am J Physiol Lung Cell Mol Physiol 279: L611-L618, 2003). To determine whether hypoxia-induced reactive oxygen and nitrogen species (ROS and RNS, respectively) may be involved in the downregulation of PKG-mediated relaxation, ovine fetal intrapulmonary veins were exposed ...

متن کامل

Role of protein kinase G in nitric oxide- and cGMP-induced relaxation of newborn ovine pulmonary veins.

In a variety of systemic blood vessels, protein kinase G (PKG) plays a critical role in mediating relaxation induced by agents that elevate cGMP, such as nitric oxide. The role of PKG in nitric oxide- and cGMP-induced relaxation is less certain in the pulmonary circulation. In the present study, we examined the effects of inhibitors of PKG on the responses of isolated fourth-generation pulmonar...

متن کامل

Involvement of cGMP-dependent protein kinase in the relaxation of ovine pulmonary arteries to cGMP and cAMP.

Agonist-induced smooth muscle relaxation occurs following an increase in intracellular concentrations of cGMP or cAMP. However, the role of protein kinase G (PKG) and/or protein kinase A (PKA) in cGMP- or cAMP-mediated pulmonary vasodilation is not clearly elucidated. In this study, we examined the relaxation responses of isolated pulmonary arteries of lambs (age = 10 +/- 1 days), preconstricte...

متن کامل

Preservation of cGMP-induced relaxation of pulmonary veins of fetal lambs exposed to chronic high altitude hypoxia: role of PKG and Rho kinase.

The roles of Rho kinase (ROCK) and cGMP-dependent protein kinase (PKG) in cGMP-mediated relaxation of fetal pulmonary veins exposed to chronic hypoxia (CH) were investigated. Fourth generation pulmonary veins were dissected from near-term fetuses ( approximately 140 days of gestation) delivered from ewes exposed to chronic high altitude hypoxia for approximately 110 days (CH) and from control e...

متن کامل

Selective type 5 phosphodiesterase inhibition alters pulmonary hemodynamics and lung liquid production in near-term fetal lambs.

Nitric oxide causes dilation of the pulmonary circulation and reduction in net lung liquid production in the fetal lamb, two critical perinatal events. Phosphodiesterase inhibition alone causes similar changes and also enhances the effects of nitric oxide. To better define the cyclic guanosine 5'-monophosphate (GMP) pathway in these events, we studied the effects of a specific phosphodiesterase...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 285 3  شماره 

صفحات  -

تاریخ انتشار 2003